Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase.
نویسندگان
چکیده
The Fe/S protein of complex III is encoded by a nuclear gene, synthesized in the cytoplasm as a precursor with a 32 residue amino-terminal extension, and transported to the outer surface of the inner mitochondrial membrane. Our data suggest the following transport pathway. First, the precursor is translocated via translocation contact sites into the matrix. There, cleavage to an intermediate containing an eight residue extension occurs. The intermediate is then redirected across the inner membrane, processed to the mature subunit, and assembled into complex III. We suggest that the folding and membrane-translocation pathway in the endosymbiotic ancestor of mitochondria has been conserved during evolution of eukaryotic cells; transfer of the gene for Fe/S protein to the nucleus has led to addition of the presequence, which routes the precursor back to its "ancestral" assembly pathway.
منابع مشابه
Analysis of the sorting signals directing NADH-cytochrome b5 reductase to two locations within yeast mitochondria.
Mitochondrial NADH-cytochrome b5 reductase (Mcr1p) is encoded by a single nuclear gene and imported into two different submitochondrial compartments: the outer membrane and the intermembrane space. We now show that the amino-terminal 47 amino acids suffice to target the Mcr1 protein to both destinations. The first 12 residues of this sequence function as a weak matrix-targeting signal; the rema...
متن کاملDisruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria.
Mice homozygous for a defect in the PTCD2 (pentatricopeptide repeat domain protein 2) gene were generated in order to study the role of this protein in mitochondrial RNA metabolism. These mice displayed specific but variable reduction of ubiquinol-cytochrome c reductase complex activity in mitochondria of heart, liver and skeletal muscle due to a decrease in the expression of mitochondrial DNA-...
متن کاملOverexpression of Ubiquinol-Cytochrome c Reductase Core Protein 1 May Protect H9c2 Cardiac Cells by Binding with Zinc
In several recent studies, proteomics analyses suggest that increase of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is cardio-protective. However, direct evidence for this effect has not yet been obtained. Thus, the current study aimed to determine this effect and the mechanism underlying this effect. The results showed that overexpression of UQCRC1 protected H9c2 cardiac cells aga...
متن کاملStructure and function of the mitochondrial ubiquinol: cytochrome c reductase and NADH: ubiquinone reductase.
Structurc of' uhiquinol : cytochrome c reductase Ubiquinol : cytochrome c reductase (cytochrome reductase) from Neurospora crassa mitochondria is a dimer and the monomeric unit consists of nine different subunits. The subunits I and I I are known as core-proteins, I I I , IV and V are the cytochromes h, c , and the iron-sulphur protein, and VI to IX are small proteins without prosthetic groups ...
متن کاملMajor changes in complex I activity in mitochondria from aged rats may not be detected by direct assay of NADH:coenzyme Q reductase.
We have investigated the respiratory activities and the concentrations of respiratory chain components of mitochondria isolated from the livers and hearts of two groups of rats aged 6 and 24 months respectively. In comparison with the adult controls (6 months), in aged rats there was a decline in total aerobic NADH oxidation in both tissues; only minor (non-significant) changes, however, were f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 47 6 شماره
صفحات -
تاریخ انتشار 1986